Faculdade de Ciências e Tecnologia

Numerical Analysis

Code

10541

Academic unit

Faculdade de Ciências e Tecnologia

Department

Departamento de Matemática

Credits

6.0

Teacher in charge

Nadir Arada

Weekly hours

4

Teaching language

Português

Objectives

We will illustrate several numerical methods for the computer solution of certain classes of mathematical problems. We will show how to use these methods in order to solve nonlinear equations, linear systems, integrate and construct accurate approximations for the solution of differential equations.

Prerequisites

Basic knowledge in analysis and linear algebra

Subject matter

1. Errors

Absolute error,  relative error, significant digits. Condition number. Numerical algorithms stability.          

2. Rootfinding for nonlinear equations

Bissection method,  fixed-point iteration, Newton method, modified Newton method, secant method. 

3. Polynomial approximation and interpolation

Polynomial interpolation: Lagrange and Newton formulas, Chebyshev polynomials, cubic Spline interpolation, least squares approximation. 

 4. Numerical integration

Newton-Cotes integration formulas, Romberg method, Gaussian integration.

5. Linear systems

Direct methods: Gaussian elimination, LU and Choleski factorizations. Iterative methods:  general procedure, Jacobi method, Gauss-Seidel method, SOR method.

6. Numerical solution of ODE

Euler methods, Taylor methods for higher orders, Runge-Kutta methods.

Bibliography

  • Quarteroni A., Saleri F.,  Scientific Computing with MATLAB and Octave, Series: Texts in Computational Science and Engineering , Vol. 2 Springer, 2006

  • Quarteroni A., Sacco R., Saleri F., Numerical Mathematics, Springer, 2000

  • Burden R. e Faires J. , Numerical Analysis, Brooks-Cole Publishing Company, 9th Edition, 2011.

  • Pina H., Métodos Numéricos, Mc Graw Hill, 1995

Courses