Faculdade de Ciências e Tecnologia

Analytical Biochemistry

Code

7300

Academic unit

Faculdade de Ciências e Tecnologia

Department

Departamento de Química

Credits

6.0

Teacher in charge

Carlos Alberto Gomes Salgueiro, Sofia Rocha Pauleta

Weekly hours

4

Total hours

64

Teaching language

Português

Objectives

After the course it is expected that the students know the biochemical and spectroscopic concepts needed to characterize biological systems at the structural and spectroscopic levels. With a strong experimental component, in an environment very similar to a research laboratoryit is intended that students:

  • develop the ability to understand and select appropriatetechniques and methodologies in the study of a particular biological system
  • cultivate a critical analysis and interpretation, in an integrated manner, all experimental data

The writing and discussion of a final report seeks students to develop ability to write a scientific manuscript and acquiretraining in the critical review of the scientific literature and skills in presenting scientific papers.

Prerequisites

Students should have attended the general courses of Biochemistry, Analytical Chemistry and Separation Methodstaught in previous years.

Subject matter

The syllabus of this curricular unit:

1.   Analysis and quantification of biomolecules

1.1.   Major methods to detect and quantify biomolecule
1.2.   Qualitative versus quantitative analyses
1.3.   Parameters used in the identifiation and quantification of biomolecules

2.   Extraction and purification of proteins - special cases

2.1.   Experimental strategies versus aim of the target
2.2.   Recombinant proteíns
2.3.   Overexpression of recombinant membrane proteins

3.   Analysis of carbohydrates

3.1.   Chemical and enzymatic methods to identify and quantify carbohydrates
3.2.   Separation of a complex mixture of carbohydrates

4.   Analysis of lipids

4.1.   Sample preparation
4.2.   Quantitative methods
4.3.   Separation of complex mixtures of lipids

5.   Immunological methods

5.1.   Antibody-antigene interaction
5.2.   Analyticla aplication of biological markers
5.3.   Applications of immunological methods

6.   Mass spectromety

6.1.   Theoretica concepts
6.2.   Tandem mass spectrometry
6.3.   Applications

7.   Bioanalysis of proteins by Nuclear magnetic Resonance spectroscopy

7.1.   Theoretical concepts
7.2.   Mono- and multidimensional NMR
7.3.   Isotopic enrichment of proteins to be studied by NMR
7.4.   Applications to biological systems

8.   Protein folding

8.1.   Thermodynamics of the denaturation process
8.2.   Stability curves: effect of the temperature
8.3.   Mechanisms of folding
8.4.   Diseases associated to protein unfolding

Bibliography

  • Analytical biochemistry, 1998. ISBN-10: 058229438X
  • Bioanalytical chemistry, 2004. ISBN: 978-0-471-54447-0
  • Bioanalytical chemistry, 2004. ISBN-10: 1860943713
  • Physical biochemistry. Principles and applications, 2009. ISBN-10:0470856033
  • Understanding bioanalytical chemistry. Principles and applications, 2009. ISBN-10: 0470029072

Teaching method

Teaching involves:

  1. Lectures taught using a "data-show", accompanied by supplementary bibliography previously available on the course page in CLIP. In the first class of the semester all information about the curricular unit will be presented. Evaluation will be discussed as well.
  1. Problem-solving sessions, putting in practice the theoretical concepts acquired throughout the different classes.
  2. Laboratory sessions with groups of four students, where students conduct experimental work following laboratory protocols previously distributed to all students. 

All the information about the course is accessible through the dedicated web page on CLIP platform. In this site all pdfs files of the lectures presentations, laboratory protocols and exercises will be available.

Courses