Faculdade de Ciências e Tecnologia

Advanced Electromagnetism

Code

11512

Academic unit

Faculdade de Ciências e Tecnologia

Department

Departamento de Física

Credits

3.0

Teacher in charge

António Carlos Simões Paiva

Weekly hours

3

Total hours

42

Teaching language

Português

Objectives

The aim of this course is to provide an advanced knowledge of the theory of classical electromagnetism. At the end of this course the student will have acquired knowledge, skills and competencies in:

  • Physical processes related to dynamic electromagnetic systems;
  • Physical processes related to the propagation of electromagnetic waves in space;
  • Physical processes related to the propagation of electromagnetic waves in matter.

Prerequisites

Electromagnetism

Analysis I, II e III

Subject matter

Vector Analysis

                        Basic Laws of Vector Algebra

                        Orthogonal Coordinate Systems

                        Differential Calculus

                        The Dirac Delta Function

Maxwell’s Equations

                         Magnetic Charge    

                         Maxwell’s Equations in Matter

                         Boundary Conditions    

Conservation Laws

       Charge and Energy    

                        The Continuity Equation    

                        Poynting’s Theorem

       Momentum    

                      Newton’s Third Law in Electrodynamics    

                      Maxwell’s Stress Tensor    

                      Conservation of Momentum    

                     Angular Momentum   

                      Magnetic Forces Do No Work    

Electromagnetic Waves

       Waves in One Dimension    

                     The Wave Equation    

                      Sinusoidal Waves    

                      Boundary Conditions: Reflection and Transmission    

                      Polarization    

       Electromagnetic Waves in Vacuum    

                      The Wave Equation for E and B   

                       Monochromatic Plane Waves    

                       Energy and Momentum in Electromagnetic Waves    

       Electromagnetic Waves in Matter    

                      Propagation in Linear Media    

                      Reflection and Transmission at Normal Incidence    

                      Reflection and Transmission at Oblique Incidence    

       Absorption and Dispersion    

                    Electromagnetic Waves in Conductors    

                     Reflection at a Conducting Surface    

                  The Frequency Dependence of Permittivity   

       Guided Waves    

                  Wave Guides   

                   TE Waves in a Rectangular Wave Guide   

                   The Coaxial Transmission Line     

Potentials and Fields

       The Potential Formulation    

                     Scalar and Vector Potentials    

                     Gauge Transformations    

                      Coulomb Gauge and Lorenz Gauge    

                      Lorentz Force Law in Potential Form

          Continuous Distributions   

                     Retarded Potentials    

                    Jefimenko’s Equations    

       Point Charges    

                    Liénard-Wiechert Potentials    

                    The Fields of a Moving Point Charge

Radiation

       Dipole Radiation    

                    What is Radiation?    

                     Electric Dipole Radiation    

                     Magnetic Dipole Radiation    

                     Radiation from an Arbitrary Source    

       Point Charges    

                     Power Radiated by a Point Charge    

                     Radiation Reaction    

                     The Mechanism Responsible for the Radiation

                      Reaction     

Bibliography

D. J. Griffiths,Introduction to Electrodynamics, 4/E, Cambridge Press, 2013

P. Lorrain, D. Corson and F. Lorrain, Electromagnetic Fields and Waves, 2/E, Freeman, 1988 

 

Teaching method

The course is divided in lectures and problem solving sessions. The lectures will be held in two sessions each week, lasting 45 min and include four assessment tests.

 

The problem solving sessions will be delivered twice a week, lasting 45 min each. These sessions aim the discussions of the physical phenomena introduced in the lectures. 

Evaluation method

Evaluation of Students

 Test 1, MCQ (30%)

 Take home TP1 (20%)

 Test 2, MCQ (30%)

 Take home TP2 (20%)

Courses