
Métodos Bayesianos
Código
12080
Unidade Orgânica
Faculdade de Ciências e Tecnologia
Departamento
Departamento de Matemática
Créditos
6.0
Professor responsável
Miguel dos Santos Fonseca
Horas semanais
4
Língua de ensino
Português
Objectivos
O objectivo desta unidade curricular consiste na aprendizagem do paradigma bayesiano na análise estatística de dados, metodologias e técnicas computacionais para inferência, testes de hipóteses e previsão.
Conteúdo
1 - O paradigma Bayesiano
2 - A distribuição a priori e métodos para a sua formulação
3 - A função verosimilhança, a distribuição a posteriori, as distribuições marginal e preditiva
4 - Inferência bayesiana
5 - Markov Chain Monte Carlo, MCMC
6 - Qualidade e seleção de modelos
7 - Modelos hierárquicos
Bibliografia
1. Albert, J. (2009). Bayesian Computation with R. Spinger.
2. Bernardo J.M. & Smith, A.F.M. (1994). Bayesian theory. Wiley.
3. Congdon P (2001). Bayesian Statistical Modelling. Wiley.
4. Cowles, M.K. (2013). Applied Bayesian Statistics. With R and OpenBUGS Examples. Springer.
5. Gamerman, D. & Lopes, H.F. (2006). Markov chain Monte Carlo - stochastic simulation for Bayesian inference. 6. Chapman & Hall/CRC.
7. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B. (2003). Bayesian Data Analysis (2nd edition).
8. Chapman and Hall / CRC, 2003.
9. Gilks, W.R., Richardson, S. and Spiegelhalter, D. (Edts.) (1996) Markov chain Monte Carlo in Practice. Chapman and Hall/CRC.
10. Lee, P.M. (2004). Bayesian Statistics: An Introduction, 3rd edition, Arnold.
Método de avaliação
A avaliação será feita em 3 momentos:
- Teste (30% da nota) - 3 de Abril de 2019
- trabalho Individual (30% da nota) - TBA
- Trabalho final individual (30% da nota) -TBA