Faculdade de Ciências e Tecnologia

Métodos Bayesianos

Código

12080

Unidade Orgânica

Faculdade de Ciências e Tecnologia

Departamento

Departamento de Matemática

Créditos

6.0

Professor responsável

Miguel dos Santos Fonseca

Horas semanais

4

Língua de ensino

Português

Objectivos

O objectivo desta unidade curricular consiste na aprendizagem do paradigma bayesiano na análise estatística de dados, metodologias e técnicas computacionais para inferência, testes de hipóteses e previsão.

Conteúdo

1 - O paradigma Bayesiano
2 - A distribuição a priori e métodos para a sua formulação
3 - A função verosimilhança, a distribuição a posteriori, as distribuições marginal e preditiva
4 - Inferência bayesiana
5 - Markov Chain Monte Carlo, MCMC
6 - Qualidade e seleção de modelos
7 - Modelos hierárquicos

Bibliografia

1. Albert, J. (2009). Bayesian Computation with R. Spinger.
2. Bernardo J.M. & Smith, A.F.M. (1994). Bayesian theory. Wiley.
3. Congdon P (2001). Bayesian Statistical Modelling. Wiley.
4. Cowles, M.K. (2013). Applied Bayesian Statistics. With R and OpenBUGS Examples. Springer.
5. Gamerman, D. & Lopes, H.F. (2006). Markov chain Monte Carlo - stochastic simulation for Bayesian inference. 6. Chapman & Hall/CRC.
7. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B. (2003). Bayesian Data Analysis (2nd edition).
8. Chapman and Hall / CRC, 2003.
9. Gilks, W.R., Richardson, S. and Spiegelhalter, D. (Edts.) (1996) Markov chain Monte Carlo in Practice. Chapman and Hall/CRC.
10. Lee, P.M. (2004). Bayesian Statistics: An Introduction, 3rd edition, Arnold.

Método de avaliação

A avaliação será feita em 3 momentos:

  1. Teste (30% da nota) - 3 de Abril de 2019
  2. trabalho Individual (30% da nota) - TBA
  3. Trabalho final individual (30% da nota) -TBA

Cursos