
Mathematical Analysis I
Code
100008
Academic unit
NOVA Information Management School
Credits
5.0
Teacher in charge
Patrícia Santos Ribeiro
Teaching language
Portuguese. If there are Erasmus students, classes will be taught in English
Objectives
This course aims at the development of analytical reasoning and calculus, essential for the remaining courses in the undergraduate program. The main learning fields are Differential Calculus and Integral Calculus for real functions with one variable.
Prerequisites
There are no attendance requirements.
Subject matter
1. The IR set
Basic concepts.
Topological notions.
2. Real functions of one real variable
Generalities about real functions of one real variable.
Notion of limit; lateral limts, properties and operations.
Continuous functions: definition and properties of continuous functions.
Theorems of Bolzano and Weierstrass .
3. Differential Calculus on IR
Derivative of a function: definition of the tangent line equation.
One-sided derivatives; differentiability; relationship between differentiability and continuity of a function; derivation rules; derivative of the composite function.
Fundamental theorems: theorems of Rolle, Lagrange and Cauchy; Cauchy rule; indeterminate forms.
Derivatives from the higher order; formula of Taylor and MacLaurin.
Extremes of functions; concavity and inflection points; asymptotes; sketch graph of a function.
4. Integral Calculus in IR
Antiderivative: definition and General methods to compute antiderivatives.
Integral Calculus: Riemann integral; Fundamental theorems of integral calculus; calculating areas of plane figures.
Bibliography
Sydsæter, K, Hammond, P., Essential Mathematics for Economic Analysis, 2nd ed., Prentice Hall, 2006.; Campos Ferreira, J., Introdução à Análise Matemática, 8ª ed., Fundação Calouste Gulbenkian, 2005.; Azenha, A., Jerónimo, M.A., Elementos de Cálculo Diferencial e Integral em IR e IRn, McGraw-Hill, 1995.
Teaching method
Lectures and practical classes for solving exercises.
Evaluation method
Continuous Evaluation System (1st season)
- Final grade is calculate by the following formula: intermediate tests (T1, T2, T3) during semester (minimum grade in each test: 7,5 points). Final grade: 30%T1+40%T2+30%T3
- Exam (100%) (minimum grade: 9,5 points)