NOVA Information Management School

Machine Learning in Finance

Código

400103

Unidade Orgânica

NOVA Information Management School

Créditos

7.5

Professor responsável

Mauro Castelli

Língua de ensino

Português. No caso de existirem alunos de Erasmus, as aulas serão leccionadas em Inglês

Objectivos

- Understand the design principles of neural networks;

- Understand the concept of activation function;

- Understand the backpropagation algorithm for training a neural network;

- Being able to build a neural network to solve classification tasks;

- Being able to use Keras or similar libraries to build a Neural Network;

- Understand the convolution operator and the idea behind convolutional neural network;

- Understand the main principles of recurrent neural network; 

- Understand LSTM and how they can be applied to counteract vanishing gradient problem.

- Being able to apply one of the deep model presented to solve financial classification or regression tasks.

Pré-requisitos

N/A

Conteúdo

Single perceptron and the training process;

Neural Networks with hidden layers and the backpropagation algorithm;

Convolutional Neural Networks;

Applicatio of CNN to image analysis;

Recurrent Neural Networks;

Vanishing gradient and LSTM

Application of LSTM to time series analysis

 

Bibliografia

Deep Learning. Ian Goodfellow, Yoshua Bengio, Aaron Courville. MIT Press, 2016.

Método de ensino

Theoretical and practical classes.

Método de avaliação

First epoch: project with discussion.

Second epoch: project with discussion.

Cursos